Abstract

It is well documented that metal-binding peptides, such as phytochelatins and metallothioneins, are involved in metal homeostasis and tolerance in plants. These peptides bind metals by means of the thiol groups of cysteine residues. Histidine is also known to be a metal-binding residue. It has been demonstrated that microorganisms and mammals possess histidine-rich metal-binding peptides for the storage and homeostasis of metals. In plants, however, only several examples which describe the characteristics of the histidine-rich metal binding peptides have been reported. We therefore searched for histidine-rich peptides in the Arabidopsis database. Here, we describe a candidate gene designated Arabidopsis thaliana histidine-rich peptide 1 (AtHIRP1). AtHIRP1, which belongs to a small auxin-up RNA (SAUR) family in Arabidopsis, shows the highest histidine content (19.7% of total amino acid residues) in the Arabidopsis genome. The recombinant AtHIRP1 apparently bound to Co 2� , Ni 2� , Cu 2� , and Zn 2� , but weakly to Cd 2� . In the case of the AtHIRP1-Zn 2� binding, the dissociation constant was 0.58 mM and the maximum binding capacity was 12 mol Zn 2� per 1 mol AtHIRP1. The accumulation of AtHIRP1 transcripts increased by drought stresses. These results suggest that AtHIRP1 is a metal-binding peptide which may function in plants exposed to abiotic stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.