Abstract

We have previously shown that a base-paired complex formed by two of the spliceosomal RNA components, U6 and U2 small nuclear RNAs (snRNAs), can catalyze a two-step splicing reaction that depended on an evolutionarily invariant region in U6, the ACAGAGA box. Here we further analyze this RNA-catalyzed reaction and show that while the 5' and 3' splice site substrates are juxtaposed and positioned near the ACAGAGA sequence in U6, the role of the snRNAs in the reaction is beyond mere juxtaposition of the substrates and likely involves the formation of a sophisticated active site. Interestingly, the snRNA-catalyzed reaction is metal dependent, as is the case with other known splicing RNA enzymes, and terbium(III) cleavage reactions indicate metal binding by the U6/U2 complex within the evolutionarily conserved regions of U6. The above results, combined with the structural similarities between U6 and catalytically critical domains in group II self-splicing introns, suggest that the base-paired complex of U6 and U2 snRNAs is a vestigial ribozyme and a likely descendant of a group II-like self-splicing intron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.