Abstract

Tumor cells are known to have an elevated requirement for methionine due to increased protein synthesis and trans-methylation reactions. A methionine based macrocyclic tumor imaging system, DO3A-Act-Met, has been designed to provide a novel platform for tumor imaging via modalities, PET/MRI using metal ions, (68)Ga and (157)Gd. Synthesis of DO3A-Act-Met was confirmed through NMR and mass spectrometric techniques. Cytotoxicity of complexes was evaluated using MTT assay whereas receptor binding and trans-stimulation studies were performed on EAT and U-87 MG cell lines. Tumor targeting was assessed through imaging and biodistribution experiments on U-87 MG xenograft model. DO3A-Act-Met was synthesized and radiolabeled with (68)Ga in high radiochemical purity (85-92%). The receptor binding assay on EAT cells predicted high binding affinity with Kd of 0.78 nM. Efflux of (35)S-L-methionine trans-stimulated by extracellular DO3A-Act-Met on U-87MG cells suggested an L-system transport. MR studies revealed a longitudinal relaxivity of 4.35 mM(-1) s(-1) for Gd-DO3A-Act-Met and a 25% signal enhancement at tumor site. The biodistribution studies in U-87MG xenografts validated tumor specificity. DO3A-Act-Met, a methionine conjugated probe is a promising agent for targeted molecular imaging, exhibiting high specificity towards tumor owing to its essential role in proliferation of cancer cells mediated through LAT1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.