Abstract
Clinical success of unicompartmental knee arthroplasty (UKA) is on the rise and is dependent on multiple patient, implant, and surgical factors. Tibial subsidence has been clinically reported as a cause of failure in UKA with an all-polyethylene tibial design in the absence of metal backing, yet the role of metal backing UKA tibial components on tibial loading is not fully understood. In this study, composite tibiae were implanted with medial all-polyethylene fixed-bearing or metal-backed UKA tibial components and a 1.5-kN load applied in 3 different contact positions simulating femoral translation during gait. All-polyethylene tibial components exhibited significantly higher strain measurements in each femoral position. This study demonstrates the role that metal backing plays on generating an even loading distribution while diminishing the development localized regions of excessive loading across the medial tibial cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.