Abstract

Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call