Abstract
To evaluate the effect of circular polarization (CP) and elliptical polarization (EP) of the B1 field on metal implant-induced artifacts of titanium (Ti) and cobalt-chromium (CoCr) hip arthroplasty implants at 1.5-T and 3.0-T field strengths. In vitro Ti and CoCr total hip arthroplasty implants were evaluated using high transmit and receive bandwidth turbo spin echo (HBW-TSE) and slice encoding for metal artifact correction (SEMAC) metal artifact reduction techniques. Each technique was implemented at 1.5-T, which only allows for CP of B1 field as the system default, as well as 3.0-T, which permitted CP and EP. Manual segmentation quantified the size of the metal artifacts at the level of the acetabular cup, femoralneck, and femoral shaft. In the acetabular cup and femoral neck, 1.5-T CP achieved smaller artifact sizes than 3.0-T CP (28-29% on HBW-TSE, p = 0.002-0.005; 17-34% on SEMAC, p = 0.019-0.102) and 3.0-T EP (25-28% on HBW-TSE, p = 0.010-0.011; 14-36% on SEMAC, p = 0.058-0.135) techniques. In the femoral stem region, 3.0-T EP achieved more efficient artifact suppression than 3.0-T CP (HBW-TSE 44-45%, p < 0.001-0.022; SEMAC 76-104%, p < 0.001-0.022) and 1.5-T CP (HBW-TSE 76-96%, p < 0.001-0.003; SEMAC 138-173%, p = 0.003-0.005) techniques. Despite slightly superior metal reduction ability of the 1.5-T in the region of the acetabular cup and prosthesis neck, 3.0-T MRI of hip arthroplasty implants using elliptically polarized RF pulses may overall be more effective in reducing metal artifacts than the current standard 1.5-T MRI techniques, which by default implements circularly polarized RF pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.