Abstract

This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.