Abstract

Researchers have begun to use DNA molecules as an efficient template for arrangement of multiple functionalized nanomaterials for specific target applications. In this research, we demonstrated a simple process to co-dope synthetic DNA nanostructures (by a substrate-assisted growth method) and natural salmon DNA thin films (by a drop-casting method) with divalent metal ions (M2+, e.g., Co2+ and Cu2+) and trivalent lanthanide ions (Ln3+, e.g., Tb3+ and Eu3+). To identify the relationship among the DNA and dopant ions, DNA nanostructures were constructed while varying the Ln3+ concentration ([Ln3+]) at a fixed [M2+] with ion combinations of Co2+–Tb3+, Co2+–Eu3+, Cu2+–Tb3+, and Cu2+–Eu3+. Accordingly, we were able to estimate the critical [Ln3+] (named the optimum [Ln3+], [Ln3+]O) at a given [M2+] in the DNA nanostructures that corresponds to the phase change of the DNA nanostructures from crystalline to amorphous. The phase of the DNA nanostructures stayed crystalline up to [Tb3+]O ≡ 0.4 mM and [Eu3+]O ≡ 0.4 mM for Co2+ ([Tb3+]O ≡ 0.6 mM and [Eu3+]O ≡ 0.6 mM for Cu2+) and then changed to amorphous above 0.4 mM (0.6 mM). Consequently, phase diagrams of the four combinations of dopant ion pairs were created by analyzing the DNA lattice phases at given [M2+] and [Ln3+]. Interestingly, we observed extrema values of the measured physical quantities of DNA thin films near [Ln3+]O, where the maximum current, photoluminescence peak intensity, and minimum absorbance were obtained. M2+- and Ln3+-multidoped DNA nanostructures and DNA thin films may be utilized in the development of useful optoelectronic devices or sensors because of enhancement and contribution of multiple functionalities provided by M2+ and Ln3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call