Abstract
We find strong localizations (relative to bulk) of Bi and to a lesser extent Pb. in some of the kamacite grains in Khohar. Other kamacite grains show no such enrichments. There are distinctive and correlated differences in the Ni contents of the two kamacite populations, with the Bi/Pb-rich kamacite grains having consistently lower Ni levels (sometimes unusually low. ~ 2% Ni) than the Bi/Pb-poor kamacite, which typically have ~ 6–7% Ni. The Bi/Pb-rich kamacite grains are also distinguished on the basis of their etching behavior, exhibiting a highly reactive attack, which has not been observed previously and which we believe may be due to the fact that the Bi/Pb-rich kamacite is finely polycrystalline.We conclude that the trace element microdistributions were not established in the nebula. Nor is it likely that the enrichments occurred with slow cooling in the presence of a vapor phase during the kamacite-taenite phase transition. Rather, the Bi/Pb-rich kamacite most likely reflect the occurrence of a brief reheating episode (or episodes), which may have been shock-induced and which was followed by rapid cooling. We find fine-grained metal-sulfide intergrowths which testify to such a reheating event, and one likely candidate for the site of this event is a hot ejecta blanket at the parent body surface. Iron oxides are found in our Khohar sections. We believe that they are not due to terrestrial alteration, that they are magnetite and that the magnetite probably originated in the same dynamic event in which the Bi/Pb distributions were established. The present data do not allow us to confidently determine whether the event occurred prior to, during, or after the compaction of this meteorite, although the simplest interpretation of the data would indicate the first alternative. Bulk Bi data for Khohar has been used for inferring accretion temperatures and this now appears inappropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.