Abstract

Ingestion of soil is a common behaviour in young children as a means of exploring their surroundings. Much attention has been given to remediation of point-source polluted sites with regard to potential health risks for children. However, because of diffuse pollution and long-range atmospheric deposition, soil contaminant levels are generally increased in urban areas compared to their rural counterparts, even in areas located away from any point sources of pollution. Intake of urban soil can thereby result in significant amounts of the child’s daily metal intake. In the present study, soil samples were collected from 25 playgrounds around urban Uppsala, Sweden and analysed for contents of Al, As, Fe, Cr, Cu, Cd, Hg, Mn, Ni, Pb, W and Zn. Prior to aqua regia digestion, the samples were wet-sieved in order to separate soil particle fractions representing deliberate (<4 mm) and involuntary (<50 μm) soil ingestion by children, as well as a third size fraction of 50–100 μm representing soil that is easily transported by suspension. While the metal and As contents in the 50–100 μm fraction were similar to those of the <4 mm fraction, the <50 μm fraction had metal and As contents on average one and a half times higher than those of the <4 mm fraction. The metal and As contents correlated negatively with the sand content in both particle size fractions <4 mm and 50–100 μm, suggesting a general decrease in metal and As content with increasing sand content. However, a positive correlation was found between sand content and the metal and As contents of the finest fraction (<50 μm), suggesting that when the sand content is high, the bulk of the sorbed elements are on the finest particles. The difference between metal and As contents in the different size fractions was greater in the soil sample with the highest sand content than in the sample with the lowest sand content. This implies that texture is a significant factor in metal and As distribution in soils with moderate metal and As contents, when the number of binding sites associated with small particles is low. Tolerable daily intake (TDI) values for Pb and As were exceeded at all sites, and at two sites for Cd, for children with pica behaviour. A high ingestion rate of mainly small particles could also result in the TDI value for Pb being exceeded at 10 sites and that for As at one site. This study also found that soil analysis by the procedure recommended by Swedish authorities accurately represents the metal intake from deliberate soil ingestion, whereas involuntary soil ingestion of mainly small particles could result in metal intakes which are up to twice as high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call