Abstract

The heats of adsorption of metals have been measured calorimetrically for the first time on clean, single-crystalline surfaces. A pulse of metal vapor from a chopped atomic beam adsorbs onto an ultrathin single crystal’s surface, causing a transient temperature rise. This heat input is detected by a pyroelectric polymer ribbon, which is gently touched to the back of the crystal during calorimetry. The sticking probability is measured by detecting the reflected fraction mass spectroscopically. The differential heat of adsorption is thus measured as a detailed function of coverage up through multilayer coverages. The integral heat of adsorption also provides the adhesion energy of the metal film, if the surface free energy of the clean metal surface is known. Adsorption and adhesion energies for metals (Pb or Cu) on clean Mo(100) and on well-defined surface oxides of Mo(100) and W(100) are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.