Abstract
Orthopedic bone plates, traditionally made from materials such as stainless steel or titanium alloy, have been pivotal in treating fractures. However, the disparity in modulus between these metals and natural bone leads to challenges, especially stress shielding, which can hinder optimal healing and cause issues such as bone resorption. In addition, the increase in complex fractures due to osteoporosis and demographic changes also points to the limitations of standard bone plates. This evolving landscape underscores the growing need for patient-specific solutions. This review delves into the advantages and challenges concerning the material choice, design, and production processes for the additive manufacturing (AM) of bone plates. AM offers the potential to customize bone plates using detailed computerized tomography scans or topology optimization, paving the way for unparalleled customization and potentially more effective bone regeneration. However, the intricacies of AM, from choosing the right materials to final production, add layers of complexity. An innovative methodology in the field of laser-metal Additive Manufacturing, known as Material-Structure-Performance Integrated AM (MSPI-AM), is at the forefront of tackling existing challenges, with the goal of enhancing the overall process in this domain. This strategy seamlessly blends material properties, structural components, and functional performance. Enriched by the analytical capabilities of artificial intelligence, this comprehensive method aims to enhance the AM process. It envisions a future where orthopedic treatments are not just functional but also are personalized masterpieces that reflect individual patient needs and address a variety of fracture scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.