Abstract
In this article, our aim is to take a step towards a full understanding of the notion of paraconsistency in the context of metainferential logics. Following the work initiated by Barrio et al. [2018], we will consider a metainferential logic to be paraconsistent whenever the metainferential version of Explosion (or meta-Explosion) is invalid. However, our contribution consists in modifying the definition of meta-Explosion by extending the standard framework and introducing a negation for inferences and metainferences. From this new perspective, Tarskian paraconsistent logics such as LP will not turn out to be metainferentially paraconsistent, in contrast to, for instance, non-transitive logics like ST. Finally, we will end up by defining a logic which is metainferentially paraconsistent at every level, and discussing whether this logic is uniform through translations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.