Abstract

Autonomous transportation systems are embarking our lives at an increasing pace. Over the past few years, several commercially available vehicles are incorporated with increasing levels of autonomy. The Autonomous Transportation Operating Modules (ATOM) framework is proposed to organize and coordinate the development as well as testing of these autonomous systems. One of the most important modules is the path planning of the vehicle, and finding the optimal path between two points is of great importance as it is directly to power saving of the battery. Metaheuristic optimization techniques are widely used to solve complex problems in an acceptable time interval. In this study, three metaheuristic approaches; simulated annealing, particle swarm and ant colony optimization are investigated to find the optimal path between two points in a static environment. The results of the PSO outperformed the other two, opening the door for investigating its implementation on the embedded level for further demonstration and testing on real experimental platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.