Abstract

The proposed metaheuristic optimization algorithm based on the two-step Adams-Bashforth scheme (MOABT) was first used in this paper for Multilayer Perceptron Training (MLP). In computer science and mathematical examples, metaheuristic is high-level procedures or guidelines designed to find, devise, or select algorithmic research methods to obtain high-quality solutions to an example problem, especially if the information is insufficient or incomplete, or if computational capacity is limited. Many metaheuristic methods include some stochastic example operations, which means that the resulting solution is dependent on the random variables that are generated during the search. The use of higher evidence can frequently find good solutions with less computational effort than iterative methods and algorithms because it searches a broad range of feasible solutions at the same time. Therefore, metaheuristic is a useful approach to solving example problems. There are several characteristics that distinguish metaheuristic strategies for the research process. The goal is to efficiently explore the search perimeter to find the best and closest solution. The techniques that make up metaheuristic algorithms range from simple searches to complex learning processes. Eight model data sets are used to calculate the proposed approach, and there are five classification data sets and three proximate job data sets included in this set. The numerical results were compared with those of the well-known evolutionary trainer Gray Wolf Optimizer (GWO). The statistical study revealed that the MOABT algorithm can outperform other algorithms in terms of avoiding local optimum and speed of convergence to global optimum. The results also show that the proposed problems can be classified and approximated with high accuracy

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call