Abstract
The current methods applied to material screening for adsorption-based heat pumps are based on a fixed set of temperatures or their independent variation, providing a limited, insufficient, and unpractical evaluation of different adsorbents. This work proposes a novel strategy for the simultaneous optimization and material screening in the design of adsorption heat pumps by implementing a meta-heuristic approach, particle swarm optimization (PSO). The proposed framework can effectively evaluate variable and broad operation temperature intervals to search for viable zones of operation for multiple adsorbents at once. The criteria for selecting the adequate material were the maximum performance and the minimum heat supply cost, which were considered the objective functions of the PSO algorithm. First, the performance was assessed individually, followed by a single-objective approximation of the multi-objective problem. Next, a multi-objective approach was also adopted. With the results generated during the optimization, it was possible to find which adsorbents and temperature sets were the most suitable according to the main objective of the operation. The Fisher-Snedecor test was applied to expand the results obtained during PSO application and a feasible operating region built around the optima, enabling the arrangement of close-to-optima data into practical design and control tools. This approach allowed for a fast and intuitive evaluation of multiple design and operation variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.