Abstract
Nature-inspired metaheuristic algorithms have steadily gained popularity over the last two decades. They have been applied to a plethora of optimization problems both in continuous and combinatorial domains. In this paper, the one-dimensional bin packing problem is solved through the implementation of two underlying heuristics, namely, best fit and better fit, and four representative state-of-the-art global metaheuristic algorithms, namely, firefly algorithm, genetic algorithm, adaptive cuckoo search algorithm, and artificial bee colony algorithm. The underlying best fit and better fit heuristics are employed by the four aforementioned global metaheuristic algorithms as reordering heuristics and local search improvement mechanisms are used for generating good packing schema. Furthermore, these two local heuristics possess special characteristics which, when incorporated into the global metaheuristics, allow them to escape local optimums and avoid getting stuck, and more so, enables the algorithms to generate good quality solutions. The main focus of this paper is the presentation of a systematic performance evaluation study for the representative algorithms, with some initial computational results that show the effectiveness of the respective algorithms and their ability to achieve promising solutions. The experiments conducted here were carried out using three standard bin packing problem datasets categories with over 1,210 instances in total, each with differing capacities, number of items and distributions between item weights. The numerical results of the representative algorithms were compared with the solutions achieved with the underlying heuristic techniques, in this case, the best fit and better fit heuristics, respectively. Similarly, the analysis of the initial computational results obtained revealed the superior performance of the individual algorithm implementation. Moreover, performance was established by taking into account both the algorithms computational time and the solution quality. Overall, several observations regarding the solution and the underlying heuristics were made. It is worth noting that by utilizing best fit heuristic, the algorithms attained optimal solutions for instances of the easy dataset requiring smaller capacity bins. However, as the complexity of the instances increased, the ability to produce high-quality results decreased. Nevertheless, this heuristic can produce near-optimal solutions and a good packing schema for most instances. On the other hand, utilizing better fit as the underlying heuristic results in optimal solutions almost all the time, regardless of capacity and number of items.
Highlights
In the classical one-dimensional bin packing problem, we are given a positive, fixed bin capacity, C, and a list of n items L = (p1, p2, ... , pn), where pi has a size, s(pi) that must satisfy the constraint, 0 ≤ s(pi) < C
Our study focuses on the one-dimensional BPP, there is a myriad of variants of the BPP, including the classical onedimensional bin packing problem (1D-BPP), the twodimensional bin packing problem (2D-BPP), and the threedimensional bin packing problem (3D-BPP)
The datasets used for the 1-dimensional bin packing problem were obtained from [62]
Summary
Researchers have studied specific versions of the BPP to solve specific problems An example of this is Coffman, et al, [60] who introduced the concept of maximizing the total number of items that are packed into each bin. This was intended to model processor and storage allocation problems In this case, given a specific number of bins, m, and a list of items, X, the aim is to pack the maximum subset of X into the bins such that the capacity of the bin is not exceeded. It is noteworthy to mention here that the main focus and contribution of this paper is to evaluate the capabilities of the selected meta-heuristics algorithms to solve the one-dimensional bin packing problem It is to investigate the effectiveness and efficiency of those well-known optimization algorithms namely, the GA, FA, CS, ABC, and some of their hybrids that have notable track records in finding good quality solutions for a variety of difficult and complex practical optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.