Abstract

Identifying the geolocation of social media users is an important problem in a wide range of applications, spanning from disease outbreaks, emergency detection, local event recommendation, to fake news localization, online marketing planning, and even crime control and prevention. Researchers have attempted to propose various models by combining different sources of information, including text, social relation, and contextual data, which indeed has achieved promising results. However, existing approaches still suffer from certain constraints, such as: 1) a very few samples are available and 2) prediction models are not easy to be generalized for users from new regions-which are challenges that motivate our study. In this article, we propose a general framework for identifying user geolocation-MetaGeo, which is a meta-learning-based approach, learning the prior distribution of the geolocation task in order to quickly adapt the prediction toward users from new locations. Different from typical meta-learning settings that only learn a new concept from few-shot samples, MetaGeo improves the geolocation prediction with conventional settings by ensembling numerous mini-tasks. In addition, MetaGeo incorporates probabilistic inference to alleviate two issues inherent in training with few samples: location uncertainty and task ambiguity. To demonstrate the effectiveness of MetaGeo, we conduct extensive experimental evaluations on three real-world datasets and compare the performance with several state-of-the-art benchmark models. The results demonstrate the superiority of MetaGeo in both the settings where the predicted locations/regions are known or have not been seen during training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.