Abstract

The ecological deterioration caused by the continuous and excessive use of synthetic inputs in agriculture has prompted the search for environmentally favorable resources for crop production. Many have advocated for the use of soils from termite mounds to improve soil and plant health; therefore, the purpose of this study was to characterize the microbiome multifunctionalities that are important for plant health and growth in termite mound soil. The metagenomics of soil from termite mounds revealed taxonomic groups with functional potentials associated with promoting the growth and health of plants in nutrient-poor, virtually dry environments. Analysis of microorganisms revealed that Proteobacteria dominated the soil of termite colonies, while Actinobacteria ranked second. The predominance of Proteobacteria and Actinobacteria, the well-known antibiotic-producing populations, indicates that the termite mound soil microbiome possesses metabolic resistance to biotic stresses. Functions recognized for diverse proteins and genes unveiled that a multi-functional microbiome carry out numerous metabolic functions including virulence, disease, defense, aromatic compound and iron metabolism, secondary metabolite synthesis, and stress response. The abundance of genes in termite mound soils associated with these prominent functions could unquestionably validate the enhancement of plants in abiotic and biotically stressed environments. This study reveals opportunities to revisit the multifunctionalities of termite mound soils in order to establish a connection between taxonomic diversity, targeted functions, and genes that could improve plant yield and health in unfavorable soil conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.