Abstract

The biotransformation of triclosan (TCS) during wastewater treatment occurred frequently, while little researches are known the identity of microorganisms involved in the biodegradation process. In this work, DNA-based stable isotope probing (DNA-SIP) was occupied to investigate the TCS assimilation microbes originated from a full-scale cyclic activated sludge system in Beijing. Results of TCS removal pathway showed that the TCS removal in nitrification process was mainly contributed by the metabolism of heterotrophic bacteria, accounting for about 18.54%. DNA-SIP assay indicated that Sphingobium dominated the degradation of TCS. Oligotyping analysis further indicated that oligotype GCTAAT and ATGTTA of Sphingobium played important roles in degrading TCS. Furthermore, the Kyoto Encyclopedia of Genes and Genomes functional abundance statistics based on PICRUSt2 showed that glutathione transferase was the most prevalent enzyme involved in TCS metabolism, and TCS might be removed through microbial carbon metabolism. Metagenomics made clear that Sphingobium might play irrelevant role on the propagation of antibiotics resistance genes (ARGs), even though, it could degrade TCS. Thauera and Dechloromonas were identified as the key hosts of most ARGs. This study revealed the potential metabolic pathway and microbial ecology of TCS biodegradation in nitrification process of wastewater treatment system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.