Abstract

Cystic fibrosis (CF) is a genetic disorder characterized by chronic microbial colonization and inflammation of the respiratory tract (RT), leading to pulmonary exacerbation (PEx) and lung damage. Although the lung bacterial microbiota has been extensively studied, the mycobiome remains understudied. However, its importance as a contributor to CF pathophysiology has been highlighted. The objective of this review is to provide an overview of the current state of knowledge regarding the mycobiome, as described through NGS-based studies, in patients with CF (pwCF).Several studies have demonstrated that the mycobiome in CF lungs is a dynamic entity, exhibiting a lower diversity and abundance than the bacterial microbiome. Nevertheless, the progression of lung damage is associated with a decrease in fungal and bacterial diversity. The core mycobiome of the RT in pwCFs is mainly composed of yeasts (Candida spp., Malassezia spp.) and molds with lower abundance. Some fungi (Aspergillus, Scedosporium/Pseudallescheria) have been demonstrated to play a role in PEx, while the involvement of others (Candida, Pneumocystis) remains uncertain. The “climax attack” ecological model has been proposed to explain the complexity and interplay of microbial populations in the RT, leading to PEx and lung damage. NGS-based studies also enable the detection of intra- and interkingdom correlations between fungi and bacteria. Further studies are required to ascertain the biological and pathophysiological relevance of these correlations. Finally, with the recent advent of CFTR modulators, our understanding of the pulmonary microbiome and mycobiome in pwCFs is about to change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.