Abstract

There is still a lack of longitudinal dynamic studies on the taxonomic features, functional reserves, and metabolites of the rabbit gut microbiome. An experiment was conducted to characterize the bacterial community of rabbits. By combining metagenomics and metabolomics, we have comprehensively analyzed the longitudinal dynamics of the rabbit gut microbiota and its effect on host adaptability. Our data reveal an overall increasing trend in microbial community and functional gene diversity and richness during the pre-harvest lifespan of rabbits. The introduction of solid feed is an important driving factor affecting rabbit gut microbiological compositions. Clostridium and Ruminococcus had significantly higher relative abundances in the solid feed stage. Further, the starch and fiber in solid feed promote the secretion of carbohydrate-degrading enzymes, which helps the host adapt to dietary changes. The rabbit gut microbiota can synthesize lysine, and the synthase is gradually enriched during the diet transformation. The gut microbiota of newborn rabbits has a higher abundance of lipid metabolism, which helps the host obtain more energy from breast milk lipids. The rabbit gut microbiota can also synthesize a variety of secondary bile acids after the introduction of solid feed. These findings provide a novel understanding of how the gut microbiota mediates adaptability to environment and diet in rabbits and provide multiple potential strategies for regulating intestinal health and promoting higher feed efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call