Abstract

Next-generation sequencing technologies have allowed researchers to determine the collective genomes of microbial communities co-existing within diverse ecological environments. Varying species abundance, length and complexities within different communities, coupled with discovery of new species makes the problem of taxonomic assignment to short DNA sequence reads extremely challenging. We have developed a new sequence composition-based taxonomic classifier using extreme learning machines referred to as TAC-ELM for metagenomic analysis. TAC-ELM uses the framework of extreme learning machines to quickly and accurately learn the weights for a neural network model. The input features consist of GC content and oligonucleotides. TAC-ELM is evaluated on two metagenomic benchmarks with sequence read lengths reflecting the traditional and current sequencing technologies. Our empirical results indicate the strength of the developed approach, which outperforms state-of-the-art taxonomic classifiers in terms of accuracy and implementation complexity. We also perform experiments that evaluate the pervasive case within metagenome analysis, where a species may not have been previously sequenced or discovered and will not exist in the reference genome databases. TAC-ELM was also combined with BLAST to show improved classification results. Code and Supplementary Results: http://www.cs.gmu.edu/~mlbio/TAC-ELM (BSD License).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call