Abstract
The long-term impact of fulvic acid (FA) on partial nitritation (PN) system was initially examined in this study. The obtained results revealed that the FA lower than 50 mg/L had negligible effect on the nitrite accumulation rate (NAR nearly 100%) and ammonium removal rate (ARR 56.85%), while FA over 50 mg/L decreased ARR from 56.85% to 0.7%. Sludge characteristics analysis found that appropriate FA (<50 mg/L) exposure promoted the settling performance and granulation of PN sludge by removing Bacteroidetes and accumulating Chloroflexi. The analysis of metagenomics suggested that the presence of limited FA (0-50 mg/L) stimulated the generation of NADH, which favors the denitrification and nitrite reduction. The negative impact of FA on the PN system could be divided into two stages. Initially, limited FA (50-120 mg/L) was decomposed by Anaerolineae to stimulate the growth and propagation of heterotrophic bacteria (Thauera). Increasing heterotrophs competed with AOB (Nitrosomonas) for dissolved oxygen, causing AOB to be eliminated and ARR to declined. Subsequently, when FA dosage was over 120 mg/L, Anaerolineae were inhibited and heterotrophic bacteria reduced, resulting in the abundance of AOB recovered. Nevertheless, the ammonium transformation pathway was suppressed because genes amoABC and hao were obviously reduced, leading to the deterioration of reactor performance. Overall, these results provide theoretical guidance for the practical application of PN for the treatment of FA-containing sewage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.