Abstract
Glacial and kettle lakes in the high-altitude Himalayas are unique habitats with significant scope for microbial ecology. The present study provides insights into bacterial community structure and function of the sediments of two high-altitude lakes using 16S amplicon and whole-genome shotgun (WGS) metagenomics. Microbial communities in the sediments of Parvati kund (glacial lake) and Bhoot ground (kettle lake) majorly consist of bacteria and a small fraction of archaea and eukaryota. The bacterial population has an abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, and Verrucomicrobia. Despite the common phyla, the sediments from each lake have a distinct distribution of bacterial and archaeal taxa. The analysis of the WGS metagenomes at the functional level provides a broad picture of microbial community metabolism of key elements and suggested chemotrophs as the major primary producers. In addition, the findings also revealed that polyhydroxyalkanoates (PHA) are a crucial stress adaptation molecule. The abundance of PHA metabolism in Alpha- and Betaproteobacteria and less representation in other bacterial and archaeal classes in both metagenomes was disclosed. The metagenomic insights provided an incisive view of the microbiome from Himalayan lake's sediments. It has also opened the scope for further bioprospection from virgin Himalayan niches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.