Abstract

BackgroundWastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1–3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period.ResultsBacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL).ConclusionsWastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.

Highlights

  • Wastewater treatment plants are an essential part of maintaining the health and safety of the general public

  • Wastewater treatment plant (WWTP) processing and sample collection The North End Sewage Treatment Plant (NESTP) is the largest wastewater facility in the Province of Manitoba (49°57′08.1′′N 97°06′11.4′′W) operating year-round with seasonal temperatures ranging from − 40 to 30 °C with the current study ranging from − 18.6 to 2.8 °C

  • Within 24 h of collection, aqueous treatment samples were filtered through a sterile cheesecloth to remove large solids and 100 to 200 mL of the filtrate was filtered through 0.2-μm 47-mm Supor200 membrane filters (Pall Corporation, Ann Harbor, MI) to capture bacterial cells for nucleic acid extraction

Read more

Summary

Introduction

Wastewater treatment plants are an essential part of maintaining the health and safety of the general public They are an anthropogenic source of antibiotic resistance genes. Wastewater treatment plants (WWTPs) are essential to maintain quality of life by protecting public health and aquatic organisms. They serve as a centralized system that collects wastewater for large-scale treatment to reduce the contamination of downstream aquatic environments. Wastewater treatment consists of removing nutrients, solids, and microbial biomass, which is critical in reducing the impact of releasing wastewater into the environment [1, 2] These water infrastructures were not designed to efficiently remove all chemical and biological pollutants. Chemical pollutants in wastewater such as antibiotics and their metabolites are found in lower and potentially subinhibitory concentrations ranging from 0.1 to 1.4 ppb [5,6,7], their presence is concerning given their potential role as a selective pressure for the exchange of resistance genes [3, 8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call