Abstract

Microbial communities of marine coastal recreation waters have become large reservoirs of AMR genes (ARGs), contributing to the emergence and transmission of various zoonotic, foodborne and other infections that exhibit resistance to various antibiotics. Thus, it is highly imperative to determine ARGs assemblages as well as mechanisms and trajectories of their transmission across these microbial communities for our better understanding of the evolutionary trends of AMR (AMR). In this study, using metagenomics approaches, we screened for ARGs in recreation waters of the Black Sea coastal areas of the Batumi City (Georgia). Also, a large array of the recombination detection algorithms of the SplitsTree, RDP4, and GARD was applied to elucidate genetic recombination of ARGs and trajectories of their transmission across various marine microbial communities. The metagenomics analyses of sea water samples, obtained from across the above marine sites, could identify putative ARGs encoding for multidrug resistance efflux transporters mainly from the Major Facilitator and Resistance Nodulation Division superfamilies. The data, generated by SplitsTree (fit ≥95.619; bootstrap values ≥ 95; Phi p≤0.0494), RDP4 (p≤0.0490), and GARD, provided strong statistical evidence not only for intrageneric recombination of these ARGs, but also for their intergeneric recombination across fairly large and diverse microbial communities of marine environment. These bacteria included both human pathogenic and nonpathogenic species, exhibiting collectively the genera of Vibrio, Aeromonas, Synechococcus, Citromicrobium, Rhodobacteraceae, Pseudoalteromonas, Altererythrobacter, Erythrobacter, Altererythrobacter, Marivivens, Xuhuaishuia, and Loktanella. The above nonpathogenic bacteria are strongly suggested to contribute to ARGs transmission in marine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call