Abstract

Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.

Highlights

  • The Indian Ocean is a highly dynamic tropical water body characterized by unique biophysical properties that strongly influence the diversity and performance of its biota [1, 2]

  • Based on targeting several fundamental light harvesting genes encoding proteins coupled to solar-based bioenergy production, from a comprehensive metagenomic data set from microbes in the Indian Ocean, we provide the first detailed overview of picocyanobacteria in this region

  • Our data strongly support the ubiquity of picocyanobacteria in this understudied ocean and extend our knowledge of their phylogenetic diversity and biogeography beyond that of the more well characterized clades of the Atlantic and Pacific Oceans [45, 14]

Read more

Summary

Introduction

The Indian Ocean is a highly dynamic tropical water body characterized by unique biophysical properties that strongly influence the diversity and performance of its biota [1, 2]. It is arguably the least studied of the oceans it covers vast areas of the globe (~20% of the oceans; average depth of 3,700 m). The more accessible northern water masses are the most well studied parts, and encompass the Arabian Sea, the Red Sea, the Persian Gulf and the Bay of Bengal These seas are highly influenced by the pronounced cross-equatorial Somali Current in the north-west (Indian Ocean equivalent to the Gulf Stream), which in turn is subject to the monsoonal reversals; as well as by waterrun-off from bordering landmasses and rivers. Satellite images (SeaWifs) indicate low chlorophyll concentrations in these waters in contrast to those of the macronutrient and iron-replete Arabian Sea and Bay of Bengal, which commonly exhibit high chlorophyll concentrations (summer monsoon) [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.