Abstract

To investigate the impact of Poa alpigena Lindm on rhizosphere and bulk soil microorganisms in Haixin Mountain, Qinghai Lake, this study employed metagenomics technology to analyze the microbial communities of the samples. Results showed that 65 phyla, 139 classes, 278 orders, 596 families, 2376 genera, and 5545 species of soil microorganisms were identified from rhizosphere and bulk soil samples. Additionally, a microbial gene library specific to Poa alpigena Lindm was established for Qinghai Lake. Through α-diversity analysis, the richness and diversity of bulk microorganisms both significantly had a higher value than that in rhizosphere soil. The indicator microorganisms of rhizosphere and bulk soil at class level were Actinobacteria and Alphaproteobacteria, respectively. KEGG pathway analysis indicated that Carotenoid biosynthesis, Starch and sucrose metabolism, Bacterial chemotaxis, MAPK signaling pathway, Terpenoid backbone biosynthesis, and vancomycin resistance were the key differential metabolic pathways of rhizosphere soil microorganisms; in contrast, in bulk soil, the key differential metabolic were Benzoate degradation, Glycolysis gluconeogenesis, Aminobenzoate degradation, ABC transporters, Glyoxylate and dicarboxylate metabolism, oxidative phosphorylation, Degradation of aromatic compounds, Methane metabolism, Pyruvate metabolism and Microbial metabolism diverse environments. Our results indicated that Poa alpigena Lindm rhizosphere soil possessed selectivity for microorganisms in Qinghai Lake Haixin Mountain, and the rhizosphere soil also provided a suitable survival environment for microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call