Abstract

The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L−1 of Fe2+ intermittent additions and 50 mg L−1 of H2O2) reached 76–86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H2O2 was present as an oxidant (Fenton, H2O2 only, solar/H2O2). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to β-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call