Abstract

In nature, mycorrhizal association with soil-borne fungi is indispensable for orchid species. Compatible mycorrhizal fungi form endo-mycorrhizal structures in orchid cells, and the fungal structures are digested in orchid cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until nonphotosynthetic young seedlings develop leaves and become photoautotrophic. Seeds of all orchids germinate with the help of their own fungal partners, and therefore, specific partnership has been acquired in a long evolutionary history between orchids and fungi. Assuming that horizontal transmission of viruses may occur in such a close relationship, we are focusing on viruses that infect orchids and their mycorrhizal fungi. We prepared aseptically germinated orchid plants (i.e., fungi-free plants) together with pure-cultured fungal isolates and conducted transcriptome analyses (RNA-seq) by next-generation sequencing (NGS) approach. To reconstruct virus-related sequences that would have been present in the RNA sample of interest, de novo assembly process is required using short read sequences obtained from RNA-seq. In the previous version of our protocol (see Viral Metagenomics, first edition 2018), virus searches were conducted using contig sets constructed by a single assembler, but this time we devised a method to construct more reliable contigs using multiple assemblers and again reinvestigated that viruses could be detected. Because the virus detection efficiency and number of detected virus species clearly differed depending on the assembly pipeline and the number of the input data, multiple methods should be used to identify viral infection, if possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call