Abstract

The objectives of this study were to investigate the effects of different forage-to-concentrate ratios and sampling times on the genetic diversity of carbohydrate-active enzymes (CAZymes) and the taxonomic profile of rumen microbial communities in dairy cows. Six ruminally cannulated Holstein cows were arbitrarily divided into groups fed high-forage (HF) or low-forage (LF) diets. The results showed that, for glycoside hydrolase (GH) families, there were greater differences based on dietary forage-to-concentrate ratio than sampling time. The HF treatment group at 4 h after feeding (AF4h) had the most microbial diversity. Genes that encode GHs had the highest number of CAZymes, and accounted for 57.33% and 56.48% of all CAZymes in the HF and LF treatments, respectively. The majority of GH family genes encode oligosaccharide-degrading enzymes, and GH2, GH3, and GH43 were synthesized by a variety of different genera. Notably, we found that GH3 was higher in HF than LF diet samples, and mainly produced by Prevotella, Bacteroides, and unclassified reads. Most predicted cellulase enzymes were encoded by GH5 (the BF0h group under HF treatment was highest) and GH95 (the BF0h group under LF treatment was highest), and were primarily derived from Bacteroides, Butyrivibrio, and Fibrobacter. Approximately 67.5% (GH28) and 65.5% (GH53) of the putative hemicellulases in LF and HF treatments, respectively. GH28 under LF treatment was more abundant than under HF treatment, and was mainly produced by Ruminococcus, Prevotella, and Bacteroides. This study revealed that HF-fed cows had increased microbial diversity of CAZyme producers, which encode enzymes that efficiently degrade plant cell wall polysaccharides in the cow rumen.

Highlights

  • Cellulose and hemicellulose in plant cell wall polysaccharides are the most abundant renewable resources in nature, and the development and use of these compounds is considered one of the most effective ways to alleviate energy problems, such as fossil fuels being a finite resource that produce pollution (Walia et al, 2017)

  • Evolutionary analysis revealed that ∼95 and ∼90% of sequences were binned to bacteria, ∼0.05 and ∼0.10% to archaea, and ∼0.08 and ∼0.05% to eukaryotes in LF and HF treatments, respectively (Supplementary Table S1)

  • The results of this study showed that the Prevotella abundance was highest in glycoside hydrolase (GH), GTs, CEs, PLs, and CBMs, and significantly higher in LF treatment than HF treatment, which was consistent with the findings of previous studies (Bekele et al, 2010), and indicated that they might be the essential microorganisms and maintained normal digestive function of the rumen

Read more

Summary

Introduction

Cellulose and hemicellulose in plant cell wall polysaccharides are the most abundant renewable resources in nature, and the development and use of these compounds is considered one of the most effective ways to alleviate energy problems, such as fossil fuels being a finite resource that produce pollution (Walia et al, 2017). The rumen is recognized as a natural bioreactor for highly efficient structural carbohydrates (e.g., cellulose and hemicellulose) degradation (Codron and Clauss, 2010). Microbial and Carbohydrate-Active Enzymes in Cows Rumen because it has a large number of microorganisms that can degrade cellulose. The cellulase produced by microorganisms is usually considered safe, stable, and efficient for cellulose degradation (Bickhart and Weimer, 2017). Bacteria account for approximately 95% of all microorganisms (Mackie et al, 2000), and, unsurprisingly, they play a critical role in cellulose decomposition during rumen fermentation (Pang et al, 2017). Owing to the presence of numerous fiberdegrading microorganisms and enzymes, 60–65% of structural carbohydrates can be degraded within 48 h of fermentation by various microorganisms that provide nutrients for host ruminant growth and development (Wang and Duan, 2014)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call