Abstract

Na⁺/H⁺ antiporters are ubiquitous membrane proteins and play a central role in cell homeostasis including pH regulation, osmoregulation, and Na⁺/Li⁺ tolerance in bacteria. The microbial communities in extremely hypersaline soil are an important resource for isolating Na⁺/H⁺ antiporter genes. A metagenomic library containing 35,700 clones was constructed by using genomic DNA obtained from the hypersaline soil samples of Keke Salt Lake in Northwest of China. Two Na⁺/H⁺ antiporters, K1-NhaD, and K2-NhaD belonging to NhaD family, were screened and cloned from this metagenome by complementing the triple mutant Escherichia coli strain KNabc (nhaA⁻, nhaB⁻, chaA⁻) in medium containing 0.2 M NaCl. K1-NhaD and K2-NhaD have 75.5% identity at the predicted amino acid sequence. K1-NhaD has 78% identity with Na⁺/H⁺ antiporter NhaD from Halomonas elongate at the predicted amino acid sequence. The predicted K1-NhaD is a 53.5 kDa protein (487 amino acids) with 13 transmembrane helices. K2-NhaD has 73% identity with Alkalimonas amylolytica NhaD. The predicted K2-NhaD is a 55 kDa protein (495 amino acids) with 12 transmembrane helices. Both K1-NhaD and K2-NhaD could make the triple mutant E. coli KNabc (nhaA⁻, nhaB⁻, chaA⁻) grow in the LBK medium containing 0.2-0.6 M Na⁺ or with 0.05-0.4 M Li⁺. Everted membrane vesicles prepared from E. coli KNabc cells carrying K1-NhaD or K2-NhaD exhibited Na⁺/H⁺ and Li⁺/H⁺ antiporter activities which were pH-dependent with the highest activity at pH 9.5. Little K⁺/H⁺ antiporter activity was also detected in vesicles form E. coli KNabc carrying K1-NhaD or K2-NhaD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.