Abstract
Culture-independent methods have contributed substantially to our understanding of global microbial diversity. Recently developed algorithms to construct whole genomes from environmental samples have further refined, corrected and revolutionized understanding of the tree of life. Here, we assembled draft metagenome-assembled genomes (MAGs) from environmental DNA extracted from two hot springs within an active volcanic ecosystem on the Kamchatka peninsula, Russia. This hydrothermal system has been intensively studied previously with regard to geochemistry, chemoautotrophy, microbial isolation, and microbial diversity. We assembled genomes of bacteria and archaea using DNA that had previously been characterized via 16S rRNA gene clone libraries. We recovered 36 MAGs, 29 of medium to high quality, and inferred their placement in a phylogenetic tree consisting of 3,240 publicly available microbial genomes. We highlight MAGs that were taxonomically assigned to groups previously underrepresented in available genome data. This includes several archaea (Korarchaeota, Bathyarchaeota and Aciduliprofundum) and one potentially new species within the bacterial genus Sulfurihydrogenibium. Putative functions in both pools were compared and are discussed in the context of their diverging geochemistry. This study adds comprehensive information about phylogenetic diversity and functional potential within two hot springs in the caldera of Kamchatka.
Highlights
Culture-independent methods have contributed substantially to our understanding of global microbial diversity
We focus on two hydrothermal pools, Arkashin Schurf and Zavarzin Spring in the Uzon Caldera that were previously characterized using 16S ribosomal RNA gene sequencing and geochemical analysis by Burgess et al.[9] (Fig. 1)
We tested the following questions: (1) Can we recover metagenome-assembled genomes (MAGs) from the two pools? Are there any previously undiscovered or unobserved taxa that can be described using this approach? (2) How do any identified MAGs compare to Burgess et al.’s survey of the microbes in these pools? Do we find any archaea in the Arkashin Schurf (ARK) pool from which Burgess et al were unable to amplify any 16S rRNA gene sequences? (3) How do any MAGs found here fit into current views of the microbial tree of life? (4) Can we identify any differences in the functional genes or specific MAGs between the two pools that might be explained by their diverging geochemistry?
Summary
Culture-independent methods have contributed substantially to our understanding of global microbial diversity. We assembled draft metagenome-assembled genomes (MAGs) from environmental DNA extracted from two hot springs within an active volcanic ecosystem on the Kamchatka peninsula, Russia This hydrothermal system has been intensively studied previously with regard to geochemistry, chemoautotrophy, microbial isolation, and microbial diversity. We focus on two hydrothermal pools, Arkashin Schurf and Zavarzin Spring in the Uzon Caldera that were previously characterized using 16S ribosomal RNA gene sequencing and geochemical analysis by Burgess et al.[9] (Fig. 1). Flocs ranging in colour from pale yellow-orange to bright orange-red have been observed floating in ARK10 This pool is characterized by high concentrations of arsenic and sulphur, which result from the oxidation and cooling of magmatic waters as they reach the surface of the caldera[9]. ZAV showed relatively lower temperatures between 26 °C and 74 °C at different locations of the pool
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.