Abstract
The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.