Abstract

Lactic acid bacteria (LAB) decisively influence the technological, nutritional, organoleptic and preservation properties of bakery products. Therefore, their use has long been considered an excellent strategy to improve the characteristics of those goods. The aim of this study was the evaluation of microbial diversity in different doughs used for the production of a typical Apulian flatbread, named focaccia. Leavening of the analyzed doughs was obtained with baker’s yeast or by applying an innovative “yeast-free” protocol based on a liquid sourdough obtained by using Leuconostoc citreum strain C2.27 as a starter. The microbial populations of the doughs were studied by both a culture-dependent approach and metagenetic analyses. The flours used for dough preparation were also subjected to the same analyses. The metagenetic analyses were performed by sequencing the V5–V6 hypervariable regions of the 16S rRNA gene and the V9 hypervariable region of the 18S rRNA gene. The results indicate that these hypervariable regions were suitable for studying the microbiota of doughs, highlighting a significant difference between the microbial community of focaccia dough with baker’s yeast and that of the dough inoculated with the bacterial starter. In particular, the dough made with baker’s yeast contained a microbiota with a high abundance of Proteobacteria (82% of the bacterial population), known to be negatively correlated with the biochemical properties of the doughs, while the Proteobacteria in dough produced with the L. citreum starter were about 43.5% lower than those in flour and dough prepared using baker’s yeast. Moreover, the results show that the L. citreum C2.27 starter was able to dominate the microbial environment and also reveal the absence of the genus Saccharomyces in the dough used for the production of the “yeast-free” focaccia. This result is particularly important because it highlights the suitability of the starter strain for obtaining an innovative “yeast-free” product.

Highlights

  • Dough leavening of bakery products has been obtained using sourdough, but with the development of industrial baking at the beginning of the 20th century, baker’s yeast (Saccharomyces cerevisiae) almost completely replaced sourdough as a more rapid leavening agent, which occurred in several traditional productions [1]

  • This study showed how the use of a microbial starter deeply affects the composition of the dough microbiota, which is directly responsible for the quality of the product

  • Metagenetic analyses indicated that the V5–V6 hypervariable regions of the 16S rRNA

Read more

Summary

Introduction

Dough leavening of bakery products has been obtained using sourdough, but with the development of industrial baking at the beginning of the 20th century, baker’s yeast (Saccharomyces cerevisiae) almost completely replaced sourdough as a more rapid leavening agent, which occurred in several traditional productions [1]. Sourdough fermentation may improve the functional/nutritional features of leavened baked goods by lowering the glycemic index, increasing mineral bioavailability, decreasing the gluten content, masking the decreased salt content and/or enriching bakery products with functional antihypertensive compounds [11,12], in addition to determining a better flavor, an extended shelf life and a reduction in additives [13]. Sourdough standardization is difficult due to its complexity, and this constitutes a problem for the bakery industry, which requires product stability and reproducibility, and short leavening times [15]. To overcome these limitations, liquid sourdough (type II) fermentation with single or mixed starter cultures has recently been introduced in bakeries [13,15,17,18]. Tailored biotechnological protocols can be used to modify the nutritional and/or functional features of the products

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call