Abstract

Equipping a deep model the ability of few-shot learning (FSL) is a core challenge for artificial intelligence. Gradient-based meta-learning effectively addresses the challenge by learning how to learn novel tasks. Its key idea is learning a deep model in a bi-level optimization manner, where the outer-loop process learns a shared gradient descent algorithm (called meta-optimizer), while the inner-loop process leverages it to optimize a task-specific base learner with few examples. Although these methods have shown superior performance on FSL, the outer-loop process requires calculating second-order derivatives along the inner-loop path, which imposes considerable memory burdens and the risk of vanishing gradients. This degrades meta-learning performance. Inspired by recent diffusion models, we find that the inner-loop gradient descent process can be viewed as a reverse process (i.e., denoising) of diffusion where the target of denoising is the weight of base learner but origin data. Based on this fact, we propose to model the gradient descent algorithm as a diffusion model and then present a novel conditional diffusion-based meta-learning, called MetaDiff, that effectively models the optimization process of base learner weights from Gaussian initialization to target weights in a denoising manner. Thanks to the training efficiency of diffusion models, our MetaDiff does not need to differentiate through the inner-loop path such that the memory burdens and the risk of vanishing gradients can be effectively alleviated for improving FSL. Experimental results show that our MetaDiff outperforms state-of-the-art gradient-based meta-learning family on FSL tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call