Abstract

Encrypted deduplication combines encryption and deduplication in a seamless way to provide confidentiality guarantees for the physical data in deduplication storage, yet it incurs substantial metadata storage overhead due to the additional storage of keys. We present a new encrypted deduplication storage system called Metadedup, which suppresses metadata storage by also applying deduplication to metadata. Its idea builds on indirection, which adds another level of metadata chunks that record metadata information. We find that metadata chunks are highly redundant in real-world workloads and hence can be effectively deduplicated. In addition, metadata chunks can be protected under the same encrypted deduplication framework, thereby providing confidentiality guarantees for metadata as well. We evaluate Metadedup through microbenchmarks, prototype experiments, and trace-driven simulation. Metadedup has limited computational overhead in metadata processing, and only adds 6.19% of performance overhead on average when storing files in a networked setting. Also, for real-world backup workloads, Metadedup saves the metadata storage by up to 97.46% at the expense of only up to 1.07% of indexing overhead for metadata chunks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call