Abstract

Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources effectively, it is necessary to attach metadata to a task to indicate what kind of resources are needed and how many computation resources are required. However, these metadata are sensitive and can be exposed to eavesdroppers, which can lead to privacy breaches. In addition, edge nodes are vulnerable to corruption because of their limited cybersecurity defenses. Attackers can easily obtain end-device privacy through unprotected metadata or corrupted edge nodes. To address this problem, we propose a metadata privacy resource allocation scheme that uses searchable encryption to protect metadata privacy and zero-knowledge proofs to resist semi-malicious edge nodes. We have formally proven that our proposed scheme satisfies the required security concepts and experimentally demonstrated the effectiveness of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.