Abstract

Data lakes have emerged as an alternative to data warehouses for the storage, exploration and analysis of big data. In a data lake, data are stored in a raw state and bear no explicit schema. Thence, an efficient metadata system is essential to avoid the data lake turning to a so-called data swamp. Existing works about managing data lake metadata mostly focus on structured and semi-structured data, with little research on unstructured data. Thus, we propose in this paper a methodological approach to build and manage a metadata system that is specific to textual documents in data lakes. First, we make an inventory of usual and meaningful metadata to extract. Then, we apply some specific techniques from the text mining and information retrieval domains to extract, store and reuse these metadata within the COREL research project, in order to validate our proposals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.