Abstract

The in vivo virulence patterns of promastigote populations defined on the basis of agglutination by the lectin peanut agglutinin (PNA) were studied for various cloned lines of Leishmania major. Promastigotes derived from logarithmic-phase cultures, which were routinely 100% agglutinated at 100 micrograms of PNA per ml, were relatively avirulent for BALB/c mice. The relative virulence of stationary-phase promastigotes appeared to be attributable to the proportion of nonagglutinable (PNA-) promastigotes contained within these populations. Purification of PNA- organisms from stationary cultures provided for each clone the most virulent inoculum, supporting the view that this change in lectin binding accurately reflects the development of infective metacyclic stage promastigotes. By studying this marker, we found that there was considerable variation in the degree to which different strains and clones underwent metacyclogenesis during growth. Examination of a reportedly avirulent L. major clone revealed that metacyclogenesis was unusually delayed and inefficient for this clone, but that those PNA- promastigotes which could be recovered from late-stationary-phase cultures were virulent for BALB/c mice. The loss of virulence associated with frequent subculture could also be attributed to a drastic diminution in metacyclogenesis potential over time. A clone which yielded over 90% PNA- promastigotes during growth within passage 1 generated fewer than 10% PNA- promastigotes during growth by passage 94. Subcloning of late-passage attenuated promastigotes yielded a clone for which no PNA- promastigotes could be generated during growth, and an infective population could not be derived from this clone. Thus, metacyclogenesis does not appear to be stable for even cloned lines of Leishmania promastigotes, and virulence comparisons between different strains and clones can be meaningfully made only if the metacyclic populations contained within the respective inocula are determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.