Abstract
Metacommunity theory offers a powerful framework to investigate the structure and dynamics of ecological communities. We used Ceratocystidaceae fungi as an empirical system to explore the potential of metacommunity principles to explain the incidence of putative fungal tree pathogens in natural ecosystems. The diversity of Ceratocystidaceae fungi was evaluated on elephant-damaged trees across the Kruger National Park of South Africa. Multivariate statistics were then used to assess the influence of landscapes, tree hosts and nitidulid beetle associates as well as isolation by distance on fungal community structure. Eight fungal and six beetle species were recovered from trees representing several plant genera. The distribution of Ceratocystidaceae fungi was highly heterogeneous across landscapes. Both tree host and nitidulid vector emerged as key factors contributing to this heterogeneity, while isolation by distance showed little influence. Our results are consistent with a model of metacommunity dynamics combining species sorting and patch dynamics processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.