Abstract

Metacyclogenesis is a process whereby Leishmania transforms from poorly infective procyclic promastigotes into highly infective metacyclic promastigotes. In nature, metacyclogenesis occurs in the insect vector. This transformation is accompanied by an increased ability to infect and survive in the vertebrate host, where the parasite is attacked by the host's immune system. Metacyclogenesis has also been shown to occur in axenic cultures of promastigotes. Morphological changes in size and shape, and length of flagellum were first associated with differentiation in the insect gut and in different phases of growth in culture. Later, the expression of molecules such as LPG and the surface protease gp63 were associated with this process. These two molecules were observed to undergo qualitative and quantitative modifications as the promastigotes differentiated from procyclic to metacyclic forms. Using cDNA subtractive hybridization-based methods or differential amplification, previously unknown genes tightly linked to metacyclogenesis have been identified. Gene products exclusively expressed in metacyclic promastigotes included a gene B product and Mat-1--a gene associated with metacyclogenesis. Other proteins, Meta-1, SHERP and HASP, were up-regulated during the metacyclic stage. The function and stage-regulated expression of these molecules and their relationship with infectivity are now under investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call