Abstract

Biological cells often interact with the environment through carpets of microscopic hair-like cilia. These elastic structures are known to beat in a synchronized wavy fashion called metachronal motion to produce fluid transport. Metachronal motion emerges due to a phase difference between beating cycles of neighboring cilia and appears as traveling waves propagating along the ciliary carpet. We demonstrate submerged in water microscale magnetic cilia that are externally actuated to beat in a metachronal fashion. Two approaches are used to induce coordinated phase differences among the beating cilia. In the first case, we fabricate cilia with an imposed gradient of geometrical properties that are subject to a rotating uniform magnetic field. In the second scenario, a ciliary array is composed of identical cilia that experience a magnetic field that varies spatiotemporally. We demonstrate that magnetic cilia can achieve symplectic, antiplectic, and leoplectic metachrony.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.