Abstract

Metabotropic glutamate receptors (mGlu receptors) are coupled to G-protein second messenger pathways and modulate glutamate neurotransmission in the brain, where they are targeted to specific synaptic locations. Very recently, we identified tubulin as an interacting partner of the mGlu(1alpha) receptor in rat brain. Using BHK-570 cells permanently expressing the receptor we have shown that this interaction occurs predominantly with soluble tubulin, following its translocation to the plasma membrane. In addition, treatment of the cells with the agonist quisqualic acid induce tubulin depolymerization and its translocation to the plasma membrane. Immunofluorescence detection of both the receptor and tubulin in agonist-treated cells reveals a disruption of the microtubule network and an increased clustering of the receptor. Collectively these data demonstrate that the mGlu(1alpha) receptor interacts with soluble tubulin and that this association can take place at the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.