Abstract

BackgroundMicroglia activation induced by α-synuclein (α-syn) is one of the most important factors in Parkinson’s disease (PD) pathogenesis. However, the molecular mechanisms by which α-syn exerts neuroinflammation and neurotoxicity remain largely elusive. Targeting metabotropic glutamate receptor 5 (mGluR5) has been an attractive strategy to mediate microglia activation for neuroprotection, which might be an essential regulator to modulate α-syn-induced neuroinflammation for the treatment of PD. Here, we showed that mGluR5 inhibited α-syn-induced microglia inflammation to protect from neurotoxicity in vitro and in vivo.MethodsCo-immunoprecipitation assays were utilized to detect the interaction between mGluR5 and α-syn in microglia. Griess, ELISA, real-time PCR, western blotting, and immunofluorescence assays were used to detect the regulation of α-syn-induced inflammatory signaling, cytokine secretion, and lysosome-dependent degradation.Resultsα-syn selectively interacted with mGluR5 but not mGluR3, and α-syn N terminal deletion region was essential for binding to mGluR5 in co-transfected HEK293T cells. The interaction between these two proteins was further detected in BV2 microglia, which was inhibited by the mGluR5 specific agonist CHPG without effect by its selective antagonist MTEP. Moreover, in both BV2 cells and primary microglia, activation of mGluR5 by CHPG partially inhibited α-syn-induced inflammatory signaling and cytokine secretion and also inhibited the microglia activation to protect from neurotoxicity. We further found that α-syn overexpression decreased mGluR5 expression via a lysosomal pathway, as evidenced by the lysosomal inhibitor, NH4Cl, by blocking mGluR5 degradation, which was not evident with the proteasome inhibitor, MG132. Additionally, co-localization of mGluR5 with α-syn was detected in lysosomes as merging with its marker, LAMP-1. Consistently, in vivo experiments with LPS- or AAV-α-syn-induced rat PD model also confirmed that α-syn accelerated lysosome-dependent degradation of mGluR5 involving a complex, to regulate neuroinflammation. Importantly, the binding is strengthened with LPS or α-syn overexpression but alleviated by urate, a potential clinical biomarker for PD.ConclusionsThese findings provided evidence for a novel mechanism by which the association of α-syn with mGluR5 was attributed to α-syn-induced microglia activation via modulation of mGluR5 degradation and its intracellular signaling. This may be a new molecular target for an effective therapeutic strategy for PD pathology.

Highlights

  • Microglia activation induced by α-synuclein (α-syn) is one of the most important factors in Parkinson’s disease (PD) pathogenesis

  • Zhang et al Journal of Neuroinflammation (2021) 18:23 (Continued from previous page). These findings provided evidence for a novel mechanism by which the association of α-syn with metabotropic glutamate receptor 5 (mGluR5) was attributed to α-syn-induced microglia activation via modulation of mGluR5 degradation and its intracellular signaling

  • The results showed that α-syn selectively interacted with mGluR5 but not with mGluR3 in cotransfected HEK293T cells (Fig. 1b, left)

Read more

Summary

Introduction

Microglia activation induced by α-synuclein (α-syn) is one of the most important factors in Parkinson’s disease (PD) pathogenesis. The molecular mechanisms by which α-syn exerts neuroinflammation and neurotoxicity remain largely elusive. Extracellular α-syn stimulates abnormal microglia activation in PD models, accompanied by multiple intracellular signaling pathways involving nuclear factor (NF)-κB, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinases (MAPKs) [3,4,5,6], and a large number of inflammatory factors such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and reactive oxygen species (ROS) secretions in vitro, which can lead to further microglia activation and cause a perpetuating cycle of neurotoxicity, aggravating neurodegenerative diseases [3, 7,8,9,10]. Given the observations that microglia activation can be induced by α-syn and is accompanied by α-syn aggregates degraded efficiently in microglia, it is important to identify the factors regulating this inflammatory process triggered by α-syn-induced microglia activation

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.