Abstract

Neurons in the avian cochlear nucleus angularis (NA) receive glutamatergic input from the auditory nerve, and GABAergic input from the superior olivary nucleus. Physiologically heterogeneous, NA neurons perform multiple functions including encoding sound intensity information. Using in vitro whole-cell patch recordings from acute brain slices and immunohistochemistry staining, we investigated neuromodulation mediated by metabotropic glutamate and GABA receptors (mGluRs and GABABRs) in NA neurons. Based on their intrinsic firing patterns in response to somatic current injections, NA neurons were classified into onset, damped, and tonic cells. Pharmacological activation of group II mGluRs, group III mGluRs, and GABABRs, by their respective agonists, suppressed the cellular excitability of non-onset firing NA neurons. Each of these agonists inhibited the glutamatergic transmission in NA neurons, in a cell type-independent manner. The frequency but not the amplitude of spontaneous release of glutamate was reduced by each of these agonists, suggesting that the modulation of the glutamatergic transmission was via presynaptic actions. Interestingly, activation of group I mGluRs increased cellular excitability and suppressed glutamatergic transmission in non-onset neurons. These results elaborate that auditory processing in NA neurons is subject to neuromodulation mediated by metabotropic receptors activated by native neurotransmitters released at NA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.