Abstract
Metabotropic glutamate receptors (mGluRs) are a major class of excitatory amino acid receptors. Eight mGluR subtypes, coupled to a variety of effector systems, have been cloned. These receptors have been classified into three groups based on amino acid sequence homology, effector systems, and pharmacological profile. Group I mGluRs increase phosphoinositide turnover, whereas groups II and III mGluRs are negatively coupled to adenylyl cyclase. The striatum possesses a high density of mGluR binding sites, and several mGluR mRNAs and proteins are expressed by striatal neurons. In rats, unilateral striatal injection of the nonsubtype selective mGluR agonist 1-aminocyclopentane-1S,3R-dicarboxylic acid (1S,3R-ACPD) results in contralateral rotation with delayed onset, thought to be secondary to an increase in dopamine release. We sought to determine the mGluR subtype(s) involved, the modulation of the rotation by other basal ganglia neurotransmitter systems, and the functional anatomy underlying the rotational behavior. The group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) induced contralateral rotation in a dose-dependent manner, whereas group II and group III agonists were ineffective. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by group I antagonists, but not by group II or group III antagonists. This suggests that the rotation is mediated by group I mGluRs. Rotation induced by DHPG or 1S,3R-ACPD was attenuated by pretreatment with antagonists at muscarinic cholinergic, adenosine A2, dopamine D2, or dopamine D1 receptors. Examination of FOS-like immunoreactivity after group I and group II mGluR agonist administration suggests increased activity in the striatopallidal pathway. However, [14C]-2-deoxyglucose uptake studies indicate increased activity in nuclei of the striatopallidal (indirect) pathway, particularly in the subthalamic nucleus, only after group I mGluR activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.