Abstract

For the purpose of investigating the effects of S100B on the development of Parkinsion's disease (PD), a high-performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry (HPLC/MS-ESI-TOF) metabonomic approach was established to study the mesencephalon profiling of brain-specific human S100B transgenic mice. In order to obtain more full-scale chemical information of metabolites, two kinds of separation mechanism, including reversed-phase (RP) column chromatography and hydrophilic interaction liquid chromatography (HILIC) column, were combined to use. Acquired data were subjected to principal component analysis (PCA) to investigate the effects of S100B protein on mice mesencephalon metabolite profiles. Potential biomarkers were screened by using Mass Hunter Prossional Profiller (MPP) and were identified by the accurate mass. Twelve metabolites in mesencephalon of S100B transgenic mice were identified as potential biomarkers, among which, glutamic acid (Glu) detected by RP/MS in negative ionization mode, gamma-aminobutyric acid (GABA) and tryptophan (Trp) detected by HILIC/MS in positive ionization mode, phenylalanine (Phe) and histidine (His) detected by HILIC/MS in negative ionization mode, related to metabolic pathway of neurotransmitters in mice central nervous system. The analytical technique used in this paper was able to detect biochemical changes in mesencephalon of S100B transgenic mice, which may be helpful to understand the action mechanism of S100B protein in the development of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call