Abstract

Metabolomics significantly impacts drug discovery and precise disease management. This study meticulously assesses the metabolite profiles of cells treated with Crocin, Dexamethasone, and mesenchymal stem cells (MSCs) under oxidative stress induced by 2-chloroethyl ethyl sulfide (CEES). Gas chromatography/mass spectrometry (GC/MS) analysis unequivocally identified substantial changes in 37 metabolites across the treated groups. Notably, pronounced alterations were observed in pathways associated with aminoacyl-tRNA biosynthesis and the metabolism of aspartate, serine, proline, and glutamate. These findings demonstrate the potent capacity of the analyzed treatments to effectively reduce inflammation, mitigate reactive oxygen species production, and enhance cell survival rates. Significance•Crocin, Dexamethasone, and the metabolites of the conditioned media of mesenchymal stem cells to decline the injury caused by CEES.•Metabolites can acquaint treatment groups in diminishing inflammation and ROS production and expanding the percentage of cell survival.•Aminoacyl-tRNA biosynthesis, nitrogen metabolism, glyoxylate and dicarboxylate metabolism, and propanoate metabolism were significant pathways involved among groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.